外围买球app推荐

外围买球app推荐

  12 月 19 日,第二局。由于李世石在第一局比赛中获胜,第二局 Handol 不再让子,李世石仍然执黑先行。

  李世石面对 AlphaGo 的那一次胜利,曾经为人类战胜人工智能带来了一线希望,但后来李世石将胜利归功于 AlphaGo 程序的缺陷。「我的第 78 手并不应该用直接的方式应对。」

  一直以来,人们都认为顶尖人类棋手与 AI 之间的差距在二子到三子之间,但由于从来没有进行过正式比赛的对局,所以真正差距无从得知。李世石提到,自己最终选择下升降棋,也是想确认人类和人工智能之间的差距到底有多少。在对战 Handol 之前,李世石说自己已经有大概 5 个月的时间没有参加过比赛,也几乎没有进行过围棋训练。

  在最后一局中,Handol 解除了大部分限制,在每一步上花费了更多「思考」时间。AI 执白在右下角存活之后,逐渐将胜率从 20% 扳至五五开,李世石的思考时间则逐渐用尽。

  在最后一局中,Handol 解除了大部分限制,在每一步上花费了更多「思考」时间。AI 执白在右下角存活之后,逐渐将胜率从 20% 扳至五五开,李世石的思考时间则逐渐用尽。

  AlphaGo 真正的优势来源于将策略网络和价值网络整合进基于概率的蒙特卡罗树搜索(MCTS)中。在获取棋局信息后,AlphaGo 会根据策略网络探索哪个位置同时具备高潜在价值和高可能性,进而决定最佳落子位置。在分配的搜索时间结束时,模拟过程中被系统最繁琐考察的位置将成为 AlphaGo 的最终选择。经过先期的全盘探索和过程中对最佳落子的不断揣摩,AlphaGo 的探索算法就能在其计算能力之上加入近似人类的直觉判断。2016 年 1 月 28 日,击败李世石的 AlphaGo 版本登上《Nature》封面,随后在 3 月即 4:1 击败李世石,名声大振。

  虽然在围棋的算力上,人类已经难以与机器相比,但棋手们可以通过与 AI 的对弈不断提升自己的水平,甚至发展出更为先进的战术。据古力此前透露,「绝艺」已经成为中国国家围棋队训练专用 AI。

  这是他自从 2016 年负于 AlphaGo 之后,再一次对战围棋 AI,也是人类棋手第一次与 AI 下升降三番棋。

  在围棋 AI 领域,国内研究机构和企业也在发力,其中最有代表性的要数上文中李世石提到的腾讯围棋 AI「绝艺」。「绝艺」诞生于 2016 年,实力或仅次于 AlphaGo。

  在接受韩联社采访时,他表示自己之所以选择退役,是因为「AI 不可战胜」:「在围棋 AI 出现以后,我发觉即使自己成为第一名,也永远需要面对一个不可战胜的实体。」

  转折点出现在李世石的第 78 手(值得一提的是,李世石当年对战 AlphaGo 获胜的唯一一局,胜负手同样是第 78 手)。黑棋吃掉白棋棋筋,加之 Handol 在第 84 手征子失误,只得在第 92 手时投子认输。

  李世石曾经的对手,曾经「绝代双骄」的另一人——中国围棋职业选手古力九段在得知这一消息之后,在社交平台上公开表示:「此刻只想给他一个大大的拥抱。」

  AlphaGo 最初主要是依靠大量学习人类棋手的棋谱来提高棋艺,之后 进入到完全的自我深度学习阶段,也就是完全摒弃人类棋手的思维方式,按照自己(左右互搏)的方式研究围棋。结合监督学习与强化学习的优势,AlphaGo 通过训练形成一个策略网络,将棋盘上的局势作为输入信息,并对有所可行的落子位置形成一个概率分布。然后训练一个价值网络对自我对弈进行预测,以-1(对手的绝对胜利)到 1(AlphaGo 的绝对胜利)的标准,预测所有可行落子位置的结果。



  退役赛的最后一局,李世石回到了自己的家乡。对战之地距离李世石的出生地飞禽岛 40 多公里,他曾在飞禽岛度过了他的童年时光,也是在这里决定成为职业围棋选手。12 月 21 日,全罗道新安郡曾岛 EI dorado 度假村,李世石在第 181 手投子认输。这是与 Handol 退役赛对战的最后一局,前两局,李世石一胜一负。最后一盘棋,还是惜败于 AI。

  2000 年,当时的「李世石三段」在巴斯卡杯天元战和倍达王战中击败柳才馨九段和刘昌赫九段,连获两个冠军,成为围棋史上成就最高的「三段」选手。但他却拒绝参加升段赛,声称「段位并不能体现实力」。为此,韩国棋界不得不废除了升段赛,改以成绩定段位。2001 年,李世石在获得第五届 LG 杯世界棋王赛亚军后升至七段,2003 年获 LG 世界棋王战冠军,直升九段。

  11 月 19 日,李世石向韩国棋院正式递交辞呈,宣告了自己 24 年职业围棋生涯的结束。

  但李世石的努力并没有扭转颓势,在弈至 159 手时,AI 判断李世石的胜率降到 5%。

发表评论

电子邮件地址不会被公开。 必填项已用*标注